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A new fluorescent probe 1, N-butyl-4, 5-(p-aldehyde)phenyl-1,8-naphthalimide, was designed and syn-
thesized for the determination of the cysteine (Cys). Upon addition of Cys, the emission of 1 was
enhanced with about 25 nm red-shift in the emission maximum (from 455 to 480 nm), accompanied
with the fluorescent color change from blue to cyan, which was attributed to the reaction of the aldehyde
groups in 1 with cysteine to form very stable thiazolidines derivative. Compound 1 was highly selective
for cysteine detection without the interference of other amino acids and can be used for bioimaging of
Cys.

� 2008 Published by Elsevier Ltd.
Cysteine deficiency causes many diseases such as slowed
growth in childhood, depigmentation of hair, edema, lethargy, liver
damage, and loss of muscle.1–5 In light of the important roles of Cys
in a variety of fundamental physicological processes in organisms,
selective and sensitive detections for Cys have gained tremendous
attentions. The determination of Cys is generally accomplished by
high-performance liquid chromatography (HPLC) or high-perfor-
mance capillary electrophoresis (HPCE).6–12 There are also some
examples of fluorescence quenching chemosensors and UV/vis
spectroscopic response for Cys in organic solution.13–16 However,
there are a few chemosensors with fluorescence enhancement
(FE) for Cys in organic solutions, and only two reports on fluores-
cence turn-on sensing and bioimaging of Cys in aqueous solu-
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tions.17 Therefore, we stress to pay more attention to novel
selective chemosensors with FE for Cys in aqueous solution.

Electron donor (D)–electron acceptor (A) interactions play a
fundamental role in organic chemistry. Reactivities and physical
properties of organic compounds largely depend on the strength
of the D–A interactions. The guest-binding will induce changes in
two-channel output signals (color change and fluorescence varia-
tion), which are convenient and sensitive for practical utilization,
especially when the substituent in the D–p–A system was strongly
electron-withdrawing or electron-acceptor. 4,5-Substituted-1,8-
naphthalimide, a frequently used fluoroionophore, possesses desir-
able spectroscopic properties. In addition, the special reaction of
aldehydes with N-terminal cysteines to form thiazolidines has
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Figure 1. Influence of pH on the fluorescence of 1 in the ethanol–water (60:40, v/v)
solution, IF = fluorescence intensity, excitation wavelength = 365 nm, emission
wavelength = 455 nm, [1] = 10 lm.

Figure 3. 1H NMR spectra of 1 in DMSO-d6 in the absence (a) and the presence of
40 equiv of Cys at 25 �C (b).
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been used to label and immobilize peptides and proteins.18 So we
designed a simple and aqueous-soluble chemosensor 1, which is
composed of the naphthalimide fluorophore and the two alde-
hydes as Cys receptors.

From the starting material N-butyl-4-bromo-5-nitro-1, 8-naph-
thalimide,19 through the intermediate N-butyl-4-bromo-5-amino-
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Figure 2. UV–vis and emission spectra of 1 (10 lm) with the addition of Cys (0–400 lm
HEPES buffer (50 mM) at 25 �C. kEX = 375 nm.
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Scheme 2. The change in fluoresce
1.8-naphthalimide 320 and N-butyl-4-bromo-5-iodo-1.8-naphthal-
imide 4,21 the target compound N-Butyl-4, 5-(p-aldehyde)phenyl-
1,8-naphthalimide was obtained (Scheme 1);22 its fluorescence
quantum yield is 0.30 in absolute ethanol, which was determined
by using quinine sulphate as standard.

The fluorescence of sensors is usually disturbed by proton in the
detection of metal ions, so their low sensitivity to pH is desired.
The effect of pH on the fluorescence of 1 was determined in etha-
nol–water (60:40, v/v) solution. The emission spectra of 1 have no
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Figure 4. Fluorescence spectra of 1 (10 lm) in a mixed solution of ethanol and
water (60:40, v/v) at pH 7.2 maintained with HEPES buffer (50 mM) in the presence
of different amino acids (40 equiv) at 25 �C, and nearly no response to other amino
acids detected (alanine, arginine, asparagine, glutamine, glycine, histidine, isoleu-
cine, leucine, lysine, methionine, proline, serine, threonine, tyrosine, and valine).
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obvious change between pH 12.0 and 2.00 (Fig. 1). So the detec-
tions of metal cations were operated in the ethanol–water
(60:40, v/v) solution at pH 7.2 maintained with HEPES buffer
(50 mM).

The resulting absorption and fluorescence spectra are shown in
Figure 2. Upon the addition of Cys to the probe solution, the absor-
bance at 375 nm decreased and the maximum of the absorption
peak shifted to the shorter wavelength (to 370 nm). At the same
time, its emission spectra also displayed a significant change
(Fig. 2): the fluorescence intensity increased with about 25 nm
red-shift in emission band (from 455 to 480 nm), accompanied
with a fluorescent color change from blue to cyan. The fluorescence
quantum yield of 1 increased from 0.25 to 0.40.

Compound 1 is a A–F–A0 p–p conjugation system (A—electron
accepting group, imide; F—aromatic fluorophore; A0—electron
accepting group, phenyl formaldehyde) due to the electron pull
effects of imide group and phenyl formaldehyde. When 1 reacts
with Cys to form compound 5, the p–p conjugation will transform
to A–F–D p–p conjugation system (A—electron accepting group,
imide; F—aromatic fluorophore; D—electron donating group, alkyl
substituent with sulfur and amino group) because of the slight
electron push effect of alkyl group. Therefore, the push–pull effect
is more efficient for compound 5, which leads to higher fluores-
cence yield accompanied with red-shift in emission spectrum.

Similar results were obtained when Cys was added to 0.1 M car-
bonate buffer solution of 1, which revealed that the Cys detection
could be operated in aqueous solution.

The 1H NMR experiments were carried out to confirm the
formation of thiazolidine derivative 1-Cys (Fig. 3). In neutral
condition, when excess Cys (in DMSO) was added into solution
of 1, the aldehyde resonance peak (9.84 ppm) of 1 disappeared
after 5 min and two new equal peaks centered at 5.63 and
5.35 ppm appeared, which could be assigned to the methine
protons of the thiazolidine diastereomer.15a These results indicated
Figure 5. Fluorescence images of V79 cells incubated with(c, d) or without (a, b) 10 lM
1000�. (a) Brightfield image of cells; and (b) excited in 365 nm, no obvious fluorescenc
that thiazolidine was formed by the interaction of aldehyde with
Cys.

A possible mechanism was proposed as shown in Scheme 2.
When Cys was added, the CHO group reacted with Cys to form
thiazolide (compound 5).

Selectivity is an important issue in the probe application of ami-
no acids detection. The effects of some relative amino acids on the
fluorescence spectra of 1 were determined. As shown in Figure 4,
the emission spectra of 1 in a mixed solution of ethanol and water
(60:40, v/v) at pH 7.2 maintained with HEPES buffer (50 mM) were
also investigated with the addition of other amino acids. The re-
sults showed that upon addition of other amino acids, slight fluo-
rescence quenching was observed without any color change,
which indicated that the CHO group only reacted with Cys, which
was the key for the selective recognition of Cys. Thus, we con-
firmed that this new probe offers good selectivity.

We also investigated the living cell bioimaging of Cys by using
DMSO–PBS(1:80, v/v, pH 7) as a staining medium. V79 cells were
used for the evaluation of 1 as potential cell imaging agent for
Cys, which were maintained as exponentially growing suspension
cultures in Eagle’s minimal essential medium with Earle’s salts,
modified for suspension cultures with 7.5% fetal calf serum. After
incubation with 1 for 2 h, it showed an intense intracellular fluo-
rescence (1 was added to cell suspension to give the appropriate
concentration at 10 lM) (Fig. 5).

In summary, an aqueous soluble fluorescent chemosensor 1 for
recognition of Cys was designed and synthesized. It showed high
selectivity for Cys by fluorometric enhancement with red-shift in
aqueous solution. Moreover, fluorescence images indicate that 1
can be used for bioimaging of Cys in living cell.
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